From 1 - 10 / 38
  • The dataset comprises Adelie penguin colony boundaries derived from oblique aerial photographs taken towards the end of the 2014/15 summer between Mawson and Taylor Glacier. The aerial photographs were geo-referenced to AAT coastline polygon data and the boundaries of Adelie penguin colonies were digitised. Please refer to the Seabird Conservation Team Data Sharing Policy for use, acknowledgement and availability of data prior to downloading data.

  • The dataset contains boundaries of Adelie penguin breeding colonies at numerous breeding sites across east Antarctica. The boundary data were obtained using a range of methods which are detailed in separate spatial group-season accounts. The database of potential Adelie penguin breeding habitat in Southwell et al. (2016a) was used to associate colony boundaries to a particular breeding site and structure how the boundaries are stored. The breeding site database has a unique identifying code of every site of potential breeding habitat in East Antarctica, and the sites are aggregated into spatial sub-groups and then spatial groups. The file structure in which the boundaries are stored has a combination of 'group' and 'split-year breeding season' at the top level (eg VES 2015-16 contains all boundaries in spatial group VES (Vestfold Hills and islands) taken in the 2015-16 breeding season). Within each group-year folder are sub-folders for each breeding site where photos were taken (eg IS_72276 is Gardner Island in the VES group). Please refer to the Seabird Conservation Team Data Sharing Policy for use, acknowledgement and availability of data prior to downloading data.

  • Occupancy surveys in November 2008 (Southwell and Emmerson 2013) found a total of 13 Adelie penguin breeding sites in the Rauer Group. The boundaries of breeding sub-colonies at 12 of these sites were subsequently mapped from vertical aerial photographs taken for abundance surveys on 21-23 November 2009. The remaining breeding site (IS_72922) was photographed obliquely from a helicopter using a hand-held camera on 20 December 2010. Colony boundaries for this site were drawn and digitised by eye. Please refer to the Seabird Conservation Team Data Sharing Policy for use, acknowledgement and availability of data prior to downloading data.

  • Adelie colony boundaries at Bechervaise Island were mapped by Matthew Pauza on the 21 Dec 2016. Subcolonies were mapped by circumnavigating the perimeter on foot while carrying a Garmin GPS (Etrex30) to record the track. When mapping the perimeter of the subcolonies a buffer distance of approximately 2.5 meters was maintained between the mapper and the breeding birds. This buffer distance was reduced by .5m to between 2m in the final shapefiles. Please refer to the Seabird Conservation Team Data Sharing Policy for use, acknowledgement and availability of data prior to downloading data.

  • An occupancy survey on 26 January 2012 found 1 island (70166) along the coast between 111 degrees 00'E - 111 degrees 10'E had populations of breeding Adelie penguins. The survey was conducted from a fixed wing aircraft and oblique aerial photographs were taken of the occupied site. The aerial photographs were geo-referenced to the coastline shapefile from the Landsat Image Mosaic of Antarctica (LIMA, tile E158) and the boundaries of penguin colonies were digitised from the geo-referenced photos with not intentional buffer. Note the quality of the aerial photos was poor and so the resultant boundary mapping will not be very accurate. Also in the Balaena Islands there is a historic record from the 50s of penguins nesting on Thompson Islet (70166). When aerial photos were taken of this island penguins could not be detected. Please refer to the Seabird Conservation Team Data Sharing Policy for use, acknowledgement and availability of data prior to downloading data.

  • An occupancy survey in November 2006 found a total of 29 islands in the Robinson Group of islands had populations of breeding Adelie penguins. The boundaries of breeding colonies at 27 of these were mapped in Nov 2006 for abundance surveys. Nine of these breeding sites were remapped on the 29th of November 2013 in conjunction with colony counts. Subcolonies were mapped by circumnavigating the perimeter of sub-colonies on foot while carrying a Garmin GPS (Legend Cx) to log the track taken. The person walking around the sub-colonies maintained a buffer distance of approximately 2.5m between themselves and the breeding birds along the sub-colony boundary. This buffer distance was reduced to approximately 2m in the final shapefiles. Please refer to the Seabird Conservation Team Data Sharing Policy for use, acknowledgement and availability of data prior to downloading data.

  • Six colonies with breeding Adelie colonies were mapped this season on Kista Island. On Bechervaise Island subcolonies C and R were not mapped and so are missing from the final layer, but birds were present in these subcolonies. Subcolonies were mapped by circumnavigating the perimeter of sub-colonies on foot while carrying a Garmin GPS (Legend Cx) to log the track taken. The person walking the perimeter of the sub-colonies maintained a buffer distance of approximately 2.5m between themselves and the breeding birds along the sub-colony boundary. This buffer distance was reduced to approximately 2m in the final shapefiles. Please refer to the Seabird Conservation Team Data Sharing Policy for use, acknowledgement and availability of data prior to downloading data.

  • Occupancy surveys in November 2009 and December 2010 (Southwell and Emmerson 2013) found a total of 2 Adelie penguin breeding sites in the Bolingen Island group between longitudes 75.333oE-75.912oE. The boundaries of breeding sub-colonies at 1 of these sites (Lichen Island, 73030) were subsequently mapped from vertical aerial photographs taken for abundance surveys on 20 November 2010 (for details of aerial photography see Southwell et al. 2013). The boundaries were mapped with a buffer distance of approximately 1-3 m from the perimeter of penguin sub-colonies. The other breeding site (73156) was photographed obliquely from a helicopter using a hand-held camera on 6 December 2010. Colony boundaries for this site were drawn and digitised by eye. Please refer to the Seabird Conservation Team Data Sharing Policy for use, acknowledgement and availability of data prior to downloading data.

  • An occupancy survey in 26 January 2012 found a total of 2 islands along the coast between 120o30’E - 121o02’E had populations of breeding Adelie penguins. The survey was conducted from a fixed wing aircraft and oblique aerial photographs were taken of each occupied site. The aerial photographs were geo-referenced to the coastline shapefile from the Landsat Image Mosaic of Antarctica (LIMA, tile E159) and the boundaries of penguin colonies were digitised from the geo-referenced photos. Details for each island are: Chick: Photographs taken on 26 January 2012 and geo-referenced to LIMA tile E159 Henry 1: Photographs taken on 26 January 2012 and geo-referenced to LIMA tile E159 Please refer to the Seabird Conservation Team Data Sharing Policy for use, acknowledgement and availability of data prior to downloading data.

  • This model was produced as part of Australian Antarctic Science project 4037 - Experimental krill biology: Response of krill to environmental change - The experimental krill research project is designed to focus on obtaining life history information of use in managing the krill fishery - the largest Antarctic fishery. In particular, the project will concentrate on studies into impacts of climate change on key aspects of krill biology and ecology. This metadata record is to reference the paper that describes the model. There is no archived data output from this data product. Taken from the abstract of the referenced paper: Estimates of productivity of Antarctic krill, Euphausia superba, are dependent on accurate models of growth and reproduction. Incorrect growth models, specifically those giving unrealistically high production, could lead to over-exploitation of the krill population if those models are used in setting catch limits. Here we review available approaches to modelling productivity and note that existing models do not account for the interactions between growth and reproduction and variable environmental conditions. We develop a new energetics moult-cycle (EMC) model which combines energetics and the constraints on growth of the moult-cycle. This model flexibly accounts for regional, inter- and intra-annual variation in temperature, food supply, and day length. The EMC model provides results consistent with the general expectations for krill growth in length and mass, including having thin krill, as well as providing insights into the effects that increasing temperature may have on growth and reproduction. We recommend that this new model be incorporated into assessments of catch limits for Antarctic krill.